Difference between revisions of "Systatické hraní rulety"
(→Definice problému) |
(→Definice problému) |
||
Line 23: | Line 23: | ||
* Martingale systém: vybereme si barvu a neustále na ní sázíme dvojnásobné částky, dokud daná barva nepadne, až ano. Poté budeme +1 násobené hodnoty (řada: 1,2,4,8,16,...) | * Martingale systém: vybereme si barvu a neustále na ní sázíme dvojnásobné částky, dokud daná barva nepadne, až ano. Poté budeme +1 násobené hodnoty (řada: 1,2,4,8,16,...) | ||
* D‘ Alembert systém: funguje na stejném principu jako předchozí, jen při padnutí naší barvy nezačínáme od 1násobku hodnoty, nýbrž pouze o jednu hodnotu níže (tedy v případě že vyhrajeme v situaci, kdy sázíme 16ti násobek další kolo nesázíme 1násobek, ale 8mi násobek) | * D‘ Alembert systém: funguje na stejném principu jako předchozí, jen při padnutí naší barvy nezačínáme od 1násobku hodnoty, nýbrž pouze o jednu hodnotu níže (tedy v případě že vyhrajeme v situaci, kdy sázíme 16ti násobek další kolo nesázíme 1násobek, ale 8mi násobek) | ||
− | * Fibonacciho systém: Opět se jedná o systém podobný výše uvedeným, nicméně se vsází dle Fibonacciho posloupnosti, tedy vždy součet posledních dvou hodnot posloupnosti (řada: 1,1,2,3,5,8,13,21,...) | + | * Fibonacciho systém: Opět se jedná o systém podobný výše uvedeným, nicméně se vsází dle Fibonacciho posloupnosti, tedy vždy součet |
+ | |||
+ | '''Cíl simulace''' | ||
+ | V práci tedy budu simulovat náhodnost rulety, přičemž budu aplikovat všechny 3 systémy sázení. Vstupem do systému bude rozpočet, který na hru mám. A tedy v případě, že přijde smolně dlouhá série, na kterou rozpočet nebude stačit, hra končí a uživatel přišel o všechny peníze. Výsledkem bude dosažená částka na konci cyklu a tedy zhodnocení všech variant. Cílem simulace je tedy zhodnocení, který systém je nejvhodnější pro zadaný rozpočet. Nejvhodnějším se rozumí, při kterém dosáhnu s největší pravděpodobností nejvyšší výhry (pokud vůbec nějaké). | ||
+ | posledních dvou hodnot posloupnosti (řada: 1,1,2,3,5,8,13,21,...) | ||
=Metoda= | =Metoda= |
Revision as of 15:06, 31 May 2014
Zadání
- Název simulace: Systematické hraní rulety
- Předmět: 4IT495 Simulace systémů (LS 2013/2014)
- Autor: Písařík Marek (XPISM00)
- Typ modelu: Monte Carlo
- Modelovací nástroj: MS Office Excel 2010
Definice problému
Kasinovou hru ruleta je možné hrát náhodně, dle oblíbených čísel, intuice, či pomocí systematického vsázení. Existují 2 typy rulet. Francouzská (čísla 1-36 + neutrální políčko 0), či Americká ruleta (čísla 1-36 + 2x neutrální políčka 0 a 00). Matematickou výhodu rulety tvoří právě neutrální políčka, proto je vhodné si vždy zvolit pro hraní první typ. V každém kole vhodí krupiér kuličku v opačném směru, než je otáčení rulety. Hráči mohou vsázet na nespočet možností, jak dané kolo dopadne.
Možné sázky:
- číslo (popř. dvojice/čtveřice sousedících čísel)
- řada (popř. dvojice sousedících řad)
- sloupec
- tucty
- barva (červená/černá)
- sudá/lichá
- 1-18/19-36
Ve své simulaci se zaměřím na problematiku systematického sázení zejména na možnosti s 50% pravděpodobností (vyjma nuly) tedy červená/černá, sudost/lichost atd. Na tyto možnosti lze sázet dle matematických posloupností. U tohoto typu hraní je nezbytné disponovat dostatečně vysokým rozpočtem, který pokryje i málo pravděpodobnou řadu stejných hodnot.
Systémy:
- Martingale systém: vybereme si barvu a neustále na ní sázíme dvojnásobné částky, dokud daná barva nepadne, až ano. Poté budeme +1 násobené hodnoty (řada: 1,2,4,8,16,...)
- D‘ Alembert systém: funguje na stejném principu jako předchozí, jen při padnutí naší barvy nezačínáme od 1násobku hodnoty, nýbrž pouze o jednu hodnotu níže (tedy v případě že vyhrajeme v situaci, kdy sázíme 16ti násobek další kolo nesázíme 1násobek, ale 8mi násobek)
- Fibonacciho systém: Opět se jedná o systém podobný výše uvedeným, nicméně se vsází dle Fibonacciho posloupnosti, tedy vždy součet
Cíl simulace V práci tedy budu simulovat náhodnost rulety, přičemž budu aplikovat všechny 3 systémy sázení. Vstupem do systému bude rozpočet, který na hru mám. A tedy v případě, že přijde smolně dlouhá série, na kterou rozpočet nebude stačit, hra končí a uživatel přišel o všechny peníze. Výsledkem bude dosažená částka na konci cyklu a tedy zhodnocení všech variant. Cílem simulace je tedy zhodnocení, který systém je nejvhodnější pro zadaný rozpočet. Nejvhodnějším se rozumí, při kterém dosáhnu s největší pravděpodobností nejvyšší výhry (pokud vůbec nějaké). posledních dvou hodnot posloupnosti (řada: 1,1,2,3,5,8,13,21,...)