Zadání LS 2020/2021

From Simulace.info
Revision as of 09:00, 7 May 2021 by Zemk05 (talk | contribs) (Simulace včelařství)
Jump to: navigation, search


Simulace přenosové soustavy

Simulace bude postavena na reálných datech o výrobě a spotřebě elektrické energie v ČR a na datech o přitékající elektrické energii od našich sousedních států. Jejich výroba el. energie taktéž ovlivňuje i naši přenosovou síť. Z tohoto důvodu jsou na pomyslných hranicích naší přenosové soustavy PST transformáty, kde dispečeři regulují výrobu a spotřebu elektrické energie u nás. Pokud by od sítě přiteklo moc energie, mohlo by to přetížit přenosovou soustavu a tím způsobit rozsáhlé výpadky proudu. Pokud by takový výpadek nastal (z důvodu výrazné výkonové nerovnováhy) je nutné, co nejrychleji zajistit stabilitu přenosové sítě. Cílem modelu je nasimulovat přenosovou soustavu a její možnou ochranu proti blackoutům.

Autor Michaela Tauchmanová

Typ modelu Systémová dynamika

Modelovací nástroj Vensim

Cíl simulace Cílem modelu je nasimulovat přenosovou soustavu a její možnou ochranu proti blackoutům.

Data Data o zatížení, přítoku energie atd. (ČEPS - https://www.ceps.cz/cs/data#Load) Spotřeba a výroba za rok včetně dat o distribučních ztrátách apod. (Český statistický úřad – Energetické bilance – https://www.czso.cz/csu/czso/ene_cr)

Taum03 (talk) 20:39, 6 May 2021 (CET)


Nalezení nejideálnějšího množství nápojových stánků a TOITOI na hudebních festivalech

Název: Nalezení nejideálnějšího množství TOITOI na festivalech

Autor: vana06, Aneta Váňová

Nástroj: NetLogo

Typ modelu: Multiagentní

Popis modelu: Venkovní hudební festivaly jsou jedny z nejpopulárnějších událostí, které návštěvníci v letním období navštěvují. Organizátoři těchto organizací musí často kalkulovat kapacitu celého festivalového objektu v návaznosti na popularitu vystupujícího. V návaznosti na tuto proměnou se musí vypořádat organizátoři s množstvím stánků s nápoji, které budou mít možnost prodeje právě na daném festivalu. Množství nápojových stánků však nemůže být neomezené z důvodu redukce prostoru. Zároveň je třeba najít takové optimální místo, aby návštěvníci festivalu netrávili většinu času festivalu právě ve frontách. Na základě následné doby pití a množství pití, které návštěvníci vypijí musí organizátoři počítat i s množstvím TOITOI mobilních toalet tak, aby jejich kapacita nebyla podhodnocena a návštěvníci se neuchylovali k obcházení pravidel festivalu. K větší reálnosti modelu též přispěje fakt, že agenti se rozhodují v průběhu procesu.

Grafy budou znázorňovat:

  • Počet čekajících návštěvníků u nápojových stánků v průběhu konání festivalu
  • Počet čekajících u TOITOI v průběhu konání festivalu
  • Průměrná doba čekání na nápoj
  • Průměrná doba čekání na TOITOI
  • Počet návštěvníků, kteří z důvodu dlouhého čekání obešli pravidla festivalu a vykonali svou potřebu za TOITOI
  • Počet nespokojených zákazníků (měřeno na základě doby čekání na nápoj a nutnosti vykonat potřebu mimo TOITOI)

Agenti:

  • Muži
    • Potřeba pití nápojů je jednou za 30 minut (na základě Zdroj 1) (určeno náhodným rozdělením)
    • Na WC potřebují v případě, že kapacita močového měchýře byla naplněna 300–400 ml (určeno náhodně v rámci daného rozmezí) Zdroj 2
    • Pravděpodobnost, že bude postupovat podle těchto čísel je 50% (rozhodování na základě aktuálních dat v procesu)
  • Ženy
    • Potřeba nového pití je jednou za 45 minut (na základě Zdroj 1) (určeno náhodným rozdělením)
    • Na WC potřebují v případě, že kapacita močového měchýře byla naplněna 150–250 ml (určeno náhodně v rámci daného rozmezí) Zdroj 2
    • Pravděpodobnost, že budou postupovat podle těchto čísel je 50% (rozhodování na základě aktuálních dat v procesu)

Parametry modelu:

  • Počet návštěvníků jednotlivých pohlaví (rozděleno vždy 50:50 z celkového množství)
  • Počet stánků s nápoji
  • Počet TOI TOI

Možná rozšíření:

  • Simulaci by bylo možné rozšířit i o stánky s občerstvením (jídlem)
  • Rozšíření o vliv počasí (teploty) a s tím spojenou větší konzumaci nápojů
  • Rozšíření o pauzy v programu, kde větší množství návštěvníků zvažuje zakoupení nového nápoje nebo navštívení TOITOI, i když to není potřeba

Cíl simulace: Na základě očekávané návštěvnosti bude možné predikovat takové množství nápojových stánků a TOITOI tak, aby bylo optimální, a tudíž aby nedocházelo k obcházení pravidel a aby návštěvníci byli spokojeni.

Poznámka: Pro simulaci je čerpáno z dat, která jsou k dispozici k velikosti močového měchýře a množství pití, avšak množství dat k tomuto tématu je omezenější.

Vana06 (talk) 22:28, 6 May 2021 (CET)


Simulácia darcovského centra

Simulácia bude zobrazovať popis procesu odberu krvnej plazmy v dárcovskom centre. Bude pozostávať z registrácie na odber, konzultácie s lekárom, čakaním na odber, odberu samotného, odpočinkom a odchodom z centra.

Darcovia sa môžu objednávať na odber v 30 minutových intervaloch, pričom simulácia bude brať v potaz „high peaks“, kedy je množstvo darcov vzhľadom na kapacitu lôžok hraničné a bude sa snažiť optimalizovať ako počet lôžok, tak i kapacitu darcov v daných „high peaks“

Simulácia by pozostávala z 3 modelov:

  • 1. Simulácia štandarného provozu
  • 2. Optimalizácia procesu za účelom lepšej efektivity času vzhľadom na darcu - v momentálnej situácií v „high peaku“ darci čakajú i desiatky minút navyše voči objednanému času
  • 3. Simulácia letného provozu - v lete je štandardne počet darcov voči zbytku roku menší - v rámci letného provozu by teda bolo možné vymyslieť optimálnu stratégiu či už napríklad v rámci zníženie personálov/lekárov a podobne.

Autor Marko Pira

Typ modelu Diskrétní simulace

Modelovací nástroj SimProcess

Entity Darca

Zdroje

  • Lékar
  • Personál
  • Skrinka
  • (Odberové) lôžko
  • (Tuba) plazmy - v rámci simulácie zistíme, koľko tub plazmy denne centrum zvládne odobrať

Cíl simulace Cieľom je nasimulovať štandardný stav centra a následne proces optimalizovať pomocou zdrojov. Ďalším cieľom je simulácia letného provozu centra a stratégie optimalizácie zdrojov, aby nedochádzalo k ich nevyužitiu

Data Data budú získané od anonymizovaného dárcovského centra v Prahe

Pirm01 (talk) 08:53, 7 May 2021 (CET)

Simulace včelařství

Budu simulovat malý včelařský podnik. Na produkci medu nezávisí pouze včely samotné, je to poměrně komplexní proces. V modelu se bude vyskytovat prodejní místo, včelař, včelí úly a louka. Med reprodukuji včely, jejichž reprodukce je závislá na tom, jaké je aktuálně počasí a které rostliny jsou v blízkosti dostupné k opylení. Muže se také stát, ze včely onemocní nebo dojde k prudkému výkyvu počasí. Vytvořeny med zpracuje včelař, který ho následně prodává na malém prodejním místě. Může se stát, že med bude nekvalitní, či ho bude málo, což ovlivní koncové prodeje. Od včelaře med kupují zákazníci nehledě na to, jakou má aktuálně produkci - poptávka je tedy nepřetržitá. Vycházet se bude z dat diplomové práce, která simulovala procesy probíhající ve včelím úle.

Autor Kateřina Zemánková

Typ modelu Systémová dynamika

Modelovací nástroj Vensim

Cíl simulace Cílem bude dokázat, zda v průběhu času bude včelař stále prosperovat, i vzhledem k proměnlivému počasí a hrozbě včelí nemoci, a jaký je optimální počet včelích úlů.

Data Diplomová práce Modelování a simulace přírodních zdrojů - https://is.muni.cz/th/mrhe1/SDIPR.pdf

zemk05 (talk) 10:00 7 May 2021