Nashova rovnováha

From Simulace.info
Revision as of 20:15, 17 June 2012 by Xbarr10 (talk | contribs) (Co Nashova rovnováha není)
Jump to: navigation, search

Jedním ze základních úkolů teorie her je popsání optimálních strategií jednotlivých hráčů, respektive výsledku hry (za předpokladu racionálního chování hráčů). Vhodným nástrojem je nalezení Nashovy rovnováhy.

Definice

Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.[1]

Vlastnosti Nashovy rovnováhy

Z definice vyplývají následující vlastnosti Nashovy rovnováhy, které jsou užitečné pro její nalezení a interpretaci:

  • Nashova rovnováha nikdy neleží v silně dominovaném sloupci.
  • Nashova rovnováha není (automaticky) Pareto-efektivní. Klasickým případem je hra vězňovo dilema, ve které se hráči bez možnosti kooperace racionálně rozhodnou pro

Nashova rovnováha v ryzích strategiích

Nashova rovnováha ve smíšených strategiích

Delší příklady

Reference

  1. DLOUHÝ, Martin. Úvod do teorie her. 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.

Další literatura

  • Ben Polak, Game Theory (Yale University: Open Yale Courses), http://oyc.yale.edu/ (Accessed June 17, 2012). License: Creative Commons BY-NC-SA, lectures 5-8