Difference between revisions of "Xslav21"
Oleg.Svatos (talk | contribs) |
(→Výstupy práce) |
||
Line 32: | Line 32: | ||
[[User:Oleg.Svatos|Oleg.Svatos]] 17:15, 12 May 2015 (CEST) Zdravím, abych se přiznal jsem z tohoto zadání nějaký zmatený - různé názvy simulace, v úvodu se mluví o multiagentní simulaci, ale dále je uváděné Monte Carlo atp. Pokud by to mělo být v MC, tak by mě zajímalo , co budou náhodné proměné a na základě jakých dat budete vycházet při stanovení pravděpodobnostních rozdělení, ze kterých budete hodnoty nahodných proměnných generovat? | [[User:Oleg.Svatos|Oleg.Svatos]] 17:15, 12 May 2015 (CEST) Zdravím, abych se přiznal jsem z tohoto zadání nějaký zmatený - různé názvy simulace, v úvodu se mluví o multiagentní simulaci, ale dále je uváděné Monte Carlo atp. Pokud by to mělo být v MC, tak by mě zajímalo , co budou náhodné proměné a na základě jakých dat budete vycházet při stanovení pravděpodobnostních rozdělení, ze kterých budete hodnoty nahodných proměnných generovat? | ||
::[[User:Oleg.Svatos|Oleg.Svatos]] 08:42, 15 May 2015 (CEST) OK. Stále zůstává otázka na základě jakých dat (tzn. reálných) budete odvozovat pravděpodobnostní rozdělení pro generovánní: 1) poptávky a 2) snížení poptávky v dalším období na základě aplikace akcí. Na toto je mít třeba reálná data, jinak simulace v MC nedává smysl. | ::[[User:Oleg.Svatos|Oleg.Svatos]] 08:42, 15 May 2015 (CEST) OK. Stále zůstává otázka na základě jakých dat (tzn. reálných) budete odvozovat pravděpodobnostní rozdělení pro generovánní: 1) poptávky a 2) snížení poptávky v dalším období na základě aplikace akcí. Na toto je mít třeba reálná data, jinak simulace v MC nedává smysl. | ||
+ | --[[User:Onarr|Onarr]] 22:09, 16 May 2015 (CEST) Zdravím. Reálná data není složité získat, vyskytují se takřka v každé učebnici ekonomie. Už tam je celkově dokázáno, že je rozdíl mezi krátkodobou a dlouhodobou poptávkou - dlouhodobá poptávka je více plochá. Z elasticity poptávky, kterou budu odvozovat od podobných výrobků (nemusí to být konkrétně elektronický výrobek, důležité je aby měl podobnou elasticitu), budu pak brát hodnoty pro pravděpodobnostní rozdělení. Jako nejvíce hodící se rozdělení pro tuto problematiku shledávám poissonovo rozdělení - většina lidí je ovlivňována elasticitou poptávky, existují však tací, kteří jsou velmi věrní značce (např apple) a výrobek si koupí i za plnou cenu poté co jej jindy koupily ve slevě. Naopak existují i tací, kteří se k výrobku staví negativně a nekoupí si jej nikdy. Většina je však ovlivňována cenou, proto poissonovo rozdělení. |
Revision as of 21:09, 16 May 2015
Optimalizace nakupovaných leteckých kapacit
Rád bych provedl monte carlo simulaci na upřednostňování krátkodobého uspokojení před dlouhodobým.
Zadání
Název simulace: Analýza ztrát v případě preference krátkodobého zisku před dlouhodobým
Předmět: 4IT495 Simulace systémů (LS 2014/2015)
Autor: Bc. Vojtěch SLánský
Typ modelu: Monte Carlo
Modelovací nástroj: MS Excel
Parametry
-náhodná proměnná - poptávka
-snížení poptávky v dalším období na základě aplikace akcí
-krátkodobé zvýšení zisku
-dlouhodobá ztráta ze ztracených zákazníků
Výstupy práce
Cílem je zjistit, jak moc firma ztrácí finanční prostředky při upřednostňování krátkodobého časového rámce (využíváním akcí a slev ke zvýšení obratu). Zákazník, který koupí zboží ve slevě má totiž tendenci nenakupovat výrobek za plnou cenu. Snížení poptávky je určeno elasticitou poptávky. Mějme firmu prodávající spotřební elektronické přístroje. Elasticita poptávky je zde poměrně vysoká, tudíž bude mít každá sleva negativní následky na poptávku po výrobcích. Portfólio produktů které firma prodává se pohybuje kolem 2000. Vliv slevových kampaní se liší u jednotlivých výrobků, podle jejich elasticity. Rozdělme je do 3 kategorií - s nízkou(200), střední (800) a vysokou elasticitou (1000). Dejme tomu, že slevové kampaně budou ovlivňovat celkové portfólio a nebude zaměřené na konkrétní kategorii. Jak vysoké slevy na jak velké množství portfólia je možné použít, aniž by se dlouhodobě snížila poptávka?
Oleg.Svatos 17:15, 12 May 2015 (CEST) Zdravím, abych se přiznal jsem z tohoto zadání nějaký zmatený - různé názvy simulace, v úvodu se mluví o multiagentní simulaci, ale dále je uváděné Monte Carlo atp. Pokud by to mělo být v MC, tak by mě zajímalo , co budou náhodné proměné a na základě jakých dat budete vycházet při stanovení pravděpodobnostních rozdělení, ze kterých budete hodnoty nahodných proměnných generovat?
- Oleg.Svatos 08:42, 15 May 2015 (CEST) OK. Stále zůstává otázka na základě jakých dat (tzn. reálných) budete odvozovat pravděpodobnostní rozdělení pro generovánní: 1) poptávky a 2) snížení poptávky v dalším období na základě aplikace akcí. Na toto je mít třeba reálná data, jinak simulace v MC nedává smysl.
--Onarr 22:09, 16 May 2015 (CEST) Zdravím. Reálná data není složité získat, vyskytují se takřka v každé učebnici ekonomie. Už tam je celkově dokázáno, že je rozdíl mezi krátkodobou a dlouhodobou poptávkou - dlouhodobá poptávka je více plochá. Z elasticity poptávky, kterou budu odvozovat od podobných výrobků (nemusí to být konkrétně elektronický výrobek, důležité je aby měl podobnou elasticitu), budu pak brát hodnoty pro pravděpodobnostní rozdělení. Jako nejvíce hodící se rozdělení pro tuto problematiku shledávám poissonovo rozdělení - většina lidí je ovlivňována elasticitou poptávky, existují však tací, kteří jsou velmi věrní značce (např apple) a výrobek si koupí i za plnou cenu poté co jej jindy koupily ve slevě. Naopak existují i tací, kteří se k výrobku staví negativně a nekoupí si jej nikdy. Většina je však ovlivňována cenou, proto poissonovo rozdělení.