Difference between revisions of "Nash equilibrium/cs"
(→Další literatura) |
(→Definice) |
||
Line 3: | Line 3: | ||
=Definice= | =Definice= | ||
− | <ref name=dlouhy>DLOUHÝ, Martin. ''Úvod do teorie her.'' 2., | + | ''Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.''<ref name=dlouhy>DLOUHÝ, Martin. ''Úvod do teorie her.'' 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.</ref> |
=Nashova rovnováha v ryzích strategiích= | =Nashova rovnováha v ryzích strategiích= |
Revision as of 18:44, 17 June 2012
Jedním ze základních úkolů teorie her je popsání optimálních strategií jednotlivých hráčů, respektive výsledku hry (za předpokladu racionálního chování hráčů). Vhodným nástrojem je nalezení Nashovy rovnováhy.
Contents
Definice
Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.[1]
Nashova rovnováha v ryzích strategiích
Nashova rovnováha ve smíšených strategiích
Delší příklady
Reference
- ↑ DLOUHÝ, Martin. Úvod do teorie her. 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.
Další literatura
- Ben Polak, Game Theory (Yale University: Open Yale Courses), http://oyc.yale.edu/ (Accessed June 17, 2012). License: Creative Commons BY-NC-SA, lectures 5-8