Difference between revisions of "Assignment SS 2023/2024/cs"

From Simulace.info
Jump to: navigation, search
(Simulace implementace SW projektu pro potřeby projektového řízení)
(Simulace implementace SW projektu pro potřeby projektového řízení)
Line 649: Line 649:
 
[[User:Pavl11|Pavl11]] ([[User talk:Pavl11|talk]]) 20:30, 9 May 2024 (CET)
 
[[User:Pavl11|Pavl11]] ([[User talk:Pavl11|talk]]) 20:30, 9 May 2024 (CET)
  
'''Schváleno.''' Pozor na to, že při hodnocení bude kladen velký důraz, mimo jiné, i na komplexnost analýzy a jak byly proměnné simulace a jejich vztahy odvozeny (je třeba, aby to bylo součástí zprávy k simulaci).[[User:Oleg.Svatos|Oleg.Svatos]] ([[User talk:Oleg.Svatos|talk]]) 10:38, 10 May 2024 (CET)
+
:: '''Schváleno.''' Pozor na to, že při hodnocení bude kladen velký důraz, mimo jiné, i na komplexnost analýzy a jak byly proměnné simulace a jejich vztahy odvozeny (je třeba, aby to bylo součástí zprávy k simulaci).[[User:Oleg.Svatos|Oleg.Svatos]] ([[User talk:Oleg.Svatos|talk]]) 10:38, 10 May 2024 (CET)

Revision as of 10:38, 10 May 2024


Contents

Simulacia urgentneho prijmu v nemocnici

Popis

Simulacia urgentneho prijmu v nemocnici, kde pacienti pocas dna prichadzaju v roznych casoch s roznou zavaznostou ochorenia. Pacienta najprv prijme sestra a nasledne vysetri lekar. Po vysetreni je pacient bud prepusteny alebo hospitalizovany. Myslienkou je vytvorit zjednoduseny model nemocnice s urcitou kapacitou a pozorovat ako pocet lekarov a sestier, pocet miestnosti na vysetrenie a algoritmus pre „triedenie“ / prioritizaciu pacientov na urgentnom prijme ovplyvnuje zaplnenie dostupnych lozok.

Cíl

Zistenie optimalneho poctu lekarov, sestier a miestnosti pre modelovanu nemocnicu. Testovanie roznych strategii prioritizacie pacientov.

Užitečnost

Simulacie oddeleni v nemocnici su uzitocne pre riesenie roznych problemov, napr.:

• Alokacia zdrojov

• Optimalizacia toku pacientov

• Redukcia cakania na vysetrenie a dlzky hospitalizacie

Metoda a způsob simulace

Diskretna simulacia v NetLogo alebo AnyLogic (necham si poradit)

Proměnné

• Kapacita nemocnice

• Pocet osetrujcich lekarov

• Pocet zdravotnych sestier

• Pocet miestnosti na vysetrenie

Náhodné proměnné

• Stav pacienta

• Dlzka vysetrenia

• Vysledok vysetrenia

• Prichod pacientov

• Odchod pacientov

Použita data pro nastavení simulace

Data pre konkretne zariadenia su limitovane. Cerpat je mozne z celkovych statistik zdravotnickych zariadeni v CR/SR a z existujucich studii.

Narodne Centrum Zdravotnickych Informacii, [1]

Ustav Zdravotnickych Informaci a Statistiky CR, [2]

Modeling and simulation of patient flow at the emergency services: Case of Al-Zahraa Hospital University Medical Center in Lebanon, [3]


Sekp02 (talk) 11:40, 9 May 2024 (CET)

Simulace tornáda ve venkovské oblasti

Popis

Jedná se o simulaci tornáda ve venkovské oblasti, kde může tornádo zasáhnout domy, farmy a další infrastrukturu. Obyvatelé oblasti jsou vystaveni riziku ničivých škod a je nutné zkoumat strategie předcházení a zvládání následků této katastrofy. Obyvatelé budou mít také možnost úniku do několika bunkrů.

Cíl

Cílem modelu je porozumět dopadům tornáda na venkovskou oblast a zjistit, jaká opatření mohou minimalizovat škody a zvýšit podíl přeživších. Důraz je kladen na analýzu evakuace a výstrahy.

Užitečnost

Model tornáda je užitečný pro studium a testování různých strategií řízení rizik spojených s tornády. Poskytuje prostředek pro zkoumání účinnosti evakuace, plánování obnovy a analýzu dopadů tornáda na obyvatelstvo a infrastrukturu venkovské oblasti.

Metoda a způsob simulace

Simulace je založena na agentově založeném modelu, kde každý agent představuje jednotlivého obyvatele nebo budovu v oblasti. Tornádo je modelováno jako pohybující se entita, která může způsobit škody na okolním prostředí. Interakce mezi tornádem a agenty jsou simulovány na základě pravděpodobnostních modelů. Jako nástroj pro simulaci využiji NetLogo.

Proměnné

• Typy budov a infrastruktura v oblasti

• Hustota obyvatelstva

• Rychlost a velikost tornáda

• Doba výstrahy a reakce obyvatel

Náhodné proměnné

• Umístění vzniku tornáda

• Intenzita a směr pohybu tornáda

• Reakce obyvatel na varování a evakuaci

• Škody způsobené tornádem na konkrétních místech

Použita data pro nastavení simulace

Studie od Daan Liang, Zhen Cong a Guofeng Cao https://journals.ametsoc.org/view/journals/wcas/14/2/WCAS-D-21-0089.1.xml

Javf00 (talk) 12:43, 8 May 2024 (CET)

Simulácia evolúcie neurónovej siete, ktorej cieľom je naučiť sa hrať klasickú hru Snake

Popis

Práca bude simulovať evolúciu agentov, ktorí sa budú snažiť naučiť hrať klasickú hru Snake. Každý agent bude predstavovaný neurálnou sieťou, ktorá na základe aktuálneho stavu hry rozhodne ako ďalej pokračovať. Cieľom práce bude zistiť najvhodnejšie parametre pre vývoj agentov.

Prostredie

Pre simuláciu evolúcie bude potrebné simulovať viacero generácií E a v každej generácii bude populácia agentov o veľkosti N. Každý agent bude hrať samostatnú inštanciu hry Snake. Po odohraní hier agentov v danej generácii sa vypočíta fitness (skóre) najlepšieho agenta. Podľa fitness sa vyberú jedinci pre ďalšiu generáciu (podľa miery elitizmu e). Ďalej sa generácia doplní novo vytvorenými agentami (potomkami), ktorí vzniknú krížením dvoch náhodne vybratých agentov. Potomkovia budú ešte zmutovaný podľa miery mutácie m. Ďalej bude pokračovať ďalšia novo vytvorená generácia.

Agenti

Každý agent bude pozostávať z neurónovej siete. Agent bude "vidieť" do ômych smerov (hore, dole, vľavo, vpravo, vpravo-hore, vpravo-dole, vľavo-dole, vľavo-hore) od hlavy hada. Pre každý smer uvidí vzdialenosť k stene, vzdialenosť k jablku (ak ho v daný smer vidí) a vzdialenosť ku svojemu chvostu (ak ho v daný smer vidí). Čiže na vstupnej vrstve bude mať 24 neurónov (8 smerov x 3 indikátory) + 4 neuróny predstavujúce smer do ktorého ide hlava hada. Celkovo 28 neurónov. Počet skrytých vrstiev a neurónov v nich môže byť cieľom skúmania práce. Váhy väzieb medzi neurónami budú z počiatku náhodné z uniformného rozdelenia, následne budú menené mutáciami agentov. Na výstupe neurónovej siete bude smer akým sa má had ďalej uberať, čiže 4 neuróny pre Hore, Dole, Vľavo, Vpravo.

Cieľ

Cieľom práce bude zistiť najvhodnejšie parametre pre vývoj agentov. S evolučným algoritmom mám skúsenosti - riešil som ním 3SAT problém a preto viem že výpočty môžu zabrať značnú dobu. Preto by som určil niektoré parametre, ktoré budú pevné a niektoré, ktoré budú cieľom skúmania. Tu mám 3 možnosti, ktoré by ma zaujímali. V každom prípade bude pevný parameter N (počet jedincov v populácii) a E počet generácií. Prvá možnosť by malá pevný počet skrytých vrstiev agentov s pevným počtom neurónov v nich a menila by sa miera mutácie a miera elitizmu. Druhá možnosť je podobná prvej, no počet skrytých vrstiev a neurónov v nich by sa s mutáciami agentov mohol meniť (čo je vlastne len zťaženie možnosti 1, ale asi sa to viac podobá skutočnej evolúcii). Tretia možnosť je, že miera mutácie a elitizmus budú pevné parametre a manuálne sa bude meniť počet vrstiev a neurónov (čo teraz ako to píšem sa mi úplne nezdá - malo by to hrozne veľa možností a ani sa to tak veľmi nepodobá evolúcii). V každom prípade budem porovnávať výsledky, ktoré agenti dosiahli za E generacií (najlepšie skóre, priemerné skóre, smerodajnú odchylku).

(Môj osobný cieľ bude, aby agent dosiahol aspoň 10 bodov a pritom, aby bolo vidno, že to nebola náhoda :D )

Nástroje

Python s knižnicou numpy pre prácu s maticami váh, knižnicou matplotlib pre grafické znázornenie výsledkov populácií a knižnicou tkinter pre zobrazenie hier (zobrazenie je to najmenej podstatné a pritom to najlepšie :D).

Autor

Stem45 (talk) 10:18, 1 May 2024 (CET)

Simulace přestupu na stanici metra Můstek

Popis

Simulovat chci přestup z linky A na linku B a naopak. Jelikož se jedná o jednu z nejvytíženějších stanic metra v Praze zaměřím se na dobu, ve které je stanice nejvíce zatížená. Zkoumat se budou oba směry příjezdu. Simulace nebude uvažovat cestující kteří chtějí z metra vystoupit.

Cíl

Výsledkem simulace by mělo být nalezení optimální cesty pro přechod z linky A na linku B a naopak. Optimální cesta bude zahrnovat i výstup z vagonu, tedy bude záležet ze kterého vagonu agent vystoupí. Optimálnost cesty se bude měřit podle:

1. Uražené vzdálenosti

2. Průměrném času

Užitečnost

Tato simulace poskytne jednoduchou a přímočarou odpověď do kterého vagonu nasednout a kterou cestou se vydat chceme-li co nejrychleji přestoupit na linku B či A a stihli tak navazující spoj.

Metoda a způsob simulace

Pro simulaci tohoto druhu budu volit agentní simulaci, kde agenti budou cestující metra. Jako nastroj pro simulaci využiji NetLogo.

Proměnné

• Příjezd metra

• Počet pasažérů

• Rychlost cestujícího

• Zvolena trasa přestupu

Náhodné proměnné

Vše až na “Příjezd metra”. Zbytek bude náhodně z intervalu získaného z dat nebo náhodným výběrem z několika možností.

Použita data pro nastavení simulace

Oficiální data od DPP o metru z roku 2015: https://data.pid.cz/pruzkumy/2015_METRO_sbornik.pdf

Bled09 (talk) 16:25, 1 May 2024 (CET)

Schváleno Tomáš (talk) 20:21, 7 May 2024 (CET)

Simulace boardingu pasažéru do letadla

Popis

Tato práce bude podrobně zkoumat proces nástupu cestujících do letadla a srovnávat účinnost různých metod, které se při tomto procesu používají. Bude se zabývat simulací samotného boardingu, abychom lépe porozuměli, jak různé strategie ovlivňují průběh nástupu a celkový čas potřebný k dokončení této fáze cesty.

Cíl

Cílem simulace je identifikovat nejefektivnější způsob nástupu cestujících s ohledem na minimalizaci celkové doby nástupu a maximalizaci spokojenosti cestujících. Simulace bude modelovat různé metody boardingu, jako je zónový boarding, skupinový boarding a nástup podle sedadel, a analyzovat jejich vliv na celkový čas nástupu a další relevantní faktory.

Užitečnost

Výsledky simulace poskytnou užitečné poznatky pro optimalizaci procesu boardingu letadla a zlepšení cestovního zážitku cestujících.

Metoda a způsob simulace

Pro simulaci tohoto druhu budu volit agentní simulaci, kde agenti budou cestující metra. Jako nastroj pro simulaci využiji NetLogo.

Proměnné

• Metoda boardingu

• Rozložení letadla a jeho velikost

• Časový rozvrh

• Strategie priority boardingu

Náhodné proměnné

• Chování cestujících - rychlost

• Náhodné rozložení cestujících v jednotlivých zónách

• Náhodné změny v chování cestujících

• Náhodné události

Použita data pro nastavení simulace

Vzniklá studie od Jason H. Steffen: https://www.sciencedirect.com/science/article/abs/pii/S0969699708000239


Arťom Ňorba (talk) 09:16, 2 May 2024 (CET)

Schváleno Tomáš (talk) 20:23, 7 May 2024 (CET)

Simulace vývoje alkoholismu: Závislost, léčba a dopady na zdraví

Popis

Konzumace alkoholu je dlouhodobě v České republice na vysoké úrovni. Roční spotřeba alkoholu na osobu dlouhodobě dosahuje hodnoty kolem 10 litrů čistého alkoholu. Denně si alkohol dopřeje téměř 10 % dospělé populace. Tato simulace se zaměřuje na modelování systému alkoholismu, který zahrnuje interakce mezi alkoholikem, léčbou, vyléčeným alkoholikem a genetikou. Dále zahrnuje náhodné proměnné, jako je inflace, cena alkoholu, prostředí, stres, nemoc a smrt. Simulace bude ukazovat, jak tyto faktory ovlivňují vývoj alkoholismu a účinnost léčby.

Cíl

Cílem této simulace je vytvořit model systémové dynamiky, který bude zkoumat vývoj alkoholismu u jednotlivce a jeho dopady na zdraví.

Užitečnost

Model by umožnil lépe porozumět faktorům, které přispívají k vzniku a prohlubování alkoholismu. Na základě výsledků simulace by pak mohly být navrženy a implementovány účinné politiky a programy pro prevenci a léčbu alkoholismu, které by mohly vést ke zlepšení zdraví populace a snížení nákladů spojených s alkoholismem.

Metoda a způsob simulace

Metoda a způsob simulace budou realizovány prostřednictvím nástroje Vensim, který je vhodný ke sledování změn hodnot proměnných v čase.

Proměnné

• Alkoholik • Alkohol • Léčba • Vyléčený alkoholik • Genetika

Náhodné proměnné

• Prostředí • Cena alkoholu • Inflace • Stres • Nemoc • Smrt

Použitá data pro nastavení simulace

https://www.drogy-info.cz/zprava-o-zavislostech/souhrnna-zprava-o-zavislostech-v-cr-2022/ https://www.czso.cz/csu/czso/graf-spotreba-alkoholickych-napoju-na-1-obyvatele-v-ceske-republice

Lacb03 (talk) 09:00, 8 May 2024 (CET)

Schváleno. Pozor na to, že při hodnocení bude kladen velký důraz, mimo jiné, i na komplexnost analýzy a jak byly proměnné simulace a jejich vztahy odvozeny (je třeba, aby to bylo součástí zprávy k simulaci).Oleg.Svatos (talk) 13:42, 9 May 2024 (CET)

Simulace přírodního výběru

Popis

Simulace se zabývá vývojem jedinců v předem definovaném prostředí s možnými vlastnostmi vývoje. Simulace abstrahuje zjednodušený svět a snaží se poukázat na fungování přírodní selekce dle Charlese Darwina.

Cíl

Cílem simulace je ukázat a vizualizovat, jak se budou jedinci vyvíjet v rámci přežití v prostředí, kde se vyskytují i ostatní jedinci. Výsledkem jsou takový jedinci, který mají nejvyšší šanci přežít v daném prostředí. Dále budeme sledovat, jakou silou se projevují jednotlivé vlastnosti. To bude rozdílné dle nastavení prostředí.

Užití

Simulaci lze použít jako důkaz přírodní selekce a její vizuální interpretaci v zjednodušeném světe. Lze jej využít jako doprovodný materiál při výuce.

Metoda a způsob simulace

Jako nástroj pro tvorbu modelu využiji NetLogo, protože tvořím multiagentní systém.

Prostředí

Prostředí je dáno čtvercovou plochou. Agenti začínají a končí svůj tah po obvodu plochy. Jestliže se nedostanou na okraj na konci kola (den, který bude složen z určitého počtu ticků), zahynou. V prostředí se každé kolo generuje jídlo.

Agenti

Agenti jsou jedinci, kteří se přežívají v prostředí tím, že získají jídlo. Mají různé vlastnosti, které se v čase mění. Jedinec se každé kolo snaží získat, alespoň 1 jídlo, pokud získá 2, může se reprodukovat. Výsledkem se na konci dne reprodukuje, umírá nebo zůstává neměnný. Při cestě do prostoru chodí nahodile (lze aplikovat různé strategie cesty, ale není to hlavní východisko, které chci zkoumat). V průběhu cesty spotřebovávají jedinci energii v závislosti na rychlosti a velikosti. Pokud jedinci dojde energie, tak se nemůže pohybovat = zahyne. Každý reprodukovaný jedinec má změněné vlastnosti v různých závislostech. Výsledkem zkoumáme, kteří jedinci (série vlastností) se v daném prostředí vede nejlépe. Kromě primárního cíle, se agenti snaží přežít tím, že utíkají před ostatními, kteří jeho mohou sníst.

Vlastnosti

Každý agent má své charakteristiky. Hlavní, které chci uplatnit je rychlost, velikost a vnímání, při předpokladu stejné zásoby energie.

• Rychlost – ovlivňuje rychlost pohybu v prostředí. Zvyšuje spotřebu energie.

• Velikost – Pokud je jedinec o x % větší než druhy, tak jej může sníst namísto jídla.

• Vnímání – Je vlastnost, do jaké vzdálenosti jedinec vidí jídlo nebo hrozbu.

Princip

Simulace probíhá v kolech. V jednom kole vybíhají jedinci z okraje plochy a opět se do ní vracejí viz. „Agenti“. Na konci kola, zahynou jedinci v prostoru. Ti, kteří získali 1 jídlo a vrátili se, zůstávají nemění a ti, kteří získali 2 jídla se reprodukují s mutacemi. Ve větším počtu cyklů tím docílíme toho, že přežijí jedinci s vlastnostmi lépe adaptovanými k tomu, jak prostředí funguje.

Proměnné

• Počet aktérů

• Počet generovaného jídla

• O kolik procent musí být jedinec větší, aby mohl sníst menšího

• Zásoba energie

Náhodné proměnné

• Původní umístění jedinců

• Umístění jídla

• Změna vlastností

Data pro nastavení simulace

Jelikož se jedná o přírodní výběr, lze se k proměnným chovat jako k jiným fenotypovým vlastnostem, tedy pro každou vlastnost může být odlišná. Avšak k odvození hodnot použiji tento článek: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497250/

Rubo01 (talk) 12:06, 6 May 2024 (CET)

Velmi obecné, konkretizujte. Tomáš (talk) 20:25, 7 May 2024 (CET)
Pokusil jsem se zadání více konkretizovat. Rubo01 (talk) 06:18, 9 May 2024 (CET)

Simulácia podkladní v supermarkete

Popis

Simulácia sa zameriava na skúmanie vplyvu počtu pokladní na zisk supermarketu. Cieľom je zistiť, ako množstvo pokladní má najväčší pozitívny vplyv na zisk, pričom sa berú do úvahy aj dlhé fronty, ktoré môžu odradiť zákazníkov a viesť k ich odchodu.

Agenti

Agenti sú jednnotlivý zákazníci.

Cíl

Cieľom simulácie je nájsť optimálny počet pokladní a ich rýchlosť obsluhy, ktoré zabezpečia maximálny zisk pre supermarket. Optimálny počet pokladní a rýchlosť obsluhy budú merať podľa:

• Celkový zisk supermarketu • Dĺžka fronty na pokladniach • Čas, ktorý trvá zákazníkom od začiatku fronty k momentu zaplatenia

Užitočnosť

Táto simulácia poskytne užitočné informácie o tom, ako zlepšiť prevádzku pokladní a maximalizovať zisk. Pomôže efektívnejšie riadiť personál a prispôsobiť sa meniacim sa potrebám zákazníkov.

Metóda a spôsob simulácie

Ako nástroj na tvorbu modelu použijem NetLogo

Premenné

• Počet pokladní • Rýchlosť obsluhy pokladní • Počet zákazníkov

Náhodné premenné

Všetky premenné budú náhodné premenné.

Dáta

Historické údaje o príchode zákazníkov do supermarketu, vrátane "peak hours" a priemerných tokov zákazníkov. Priemerné časy obsluhy pri pokladniach založené na pozorovateľných údajoch.

Lavd01 (talk) 16:10, 6 May 2024 (CET)

Dokud jsme měli ještě v programu zařazené diskrétní simulace, toto byla naprosto typická úloha právě na ně (dokonce byla ve slidech) a odkázal bych Vás na Simprocess. V tomto případě Simprocess už k dispozici není, lze to řešit jinými nástroji, např. AnyLogicem, které jsme ale nedělali. Řešení v NetLogu je možné, bude ale poměrně pracné. Nicméně, pokud na tom trváte, tak schváleno a budu zvědav, jak se to bude lišit od řešení v Simprocessu. Tomáš (talk) 20:30, 7 May 2024 (CET)

Simulace úspěšnosti studentů

Popis

Simulace se zaměřuje na zkoumání vlivu různých faktorů, jako je typ školy, pohlaví studenta, věk, typ adresy, velikost rodiny, stav spoluobývání rodičů, úroveň vzdělání matky, úroveň vzdělání otce, povolání matky a povolání otce, na akademický výkon a úspěch studentů ve školním vzdělávání.

Agenti

Agenti jsou studenty

Cíl

Cílem simulace je analyzovat vliv sociodemografických faktorů na úspěšnost studentů a vzdělávací výsledky. Cílem je identifikovat klíčové determinanty akademického výkonu studentů a zkoumat strategie pro zlepšení rovnosti ve vzdělávání a přístupu k němu.

Užitečnost

Tato simulace poskytne užitečné poznatky pro pedagogy, politické rozhodovatele, školní administrátory a výzkumníky. Pedagogové ji mohou využít k porozumění, jak různé sociodemografické charakteristiky studentů ovlivňují akademické výsledky a přizpůsobit intervence podle potřeby. Politici ji mohou využít k navrhování politik založených na důkazech, které mají za cíl snížit nerovnosti ve vzdělávacích výsledcích. Školní administrátoři ji mohou využít k efektivnímu alokování zdrojů a implementaci cílených podpůrných programů. Výzkumníci ji mohou využít k zkoumání komplexních interakcí mezi různými sociodemografickými faktory a úspěchem studentů.

Metoda a způsob simulace

Jako prostředek pro tvorbu modelu použiju NetLogo.

Proměnné

• Pohlaví studenta (F nebo M) • Věk • Typ adresy (městská nebo venkovská) • Velikost rodiny (menší nebo rovno 3 nebo větší než 3) • Stav spoluobývání rodičů (žijí spolu nebo odděleně) • Úroveň vzdělání matky (0-4) • Úroveň vzdělání otce (0-4)

Náhodné proměnné

• Motivace ke studiu

Dáta

Hodnoty proměnných budou založeny na datasetu (Student achievement in secondary education of two Portuguese schools. - https://www.kaggle.com/datasets/larsen0966/student-performance-data-set/data), přičemž distribuce a charakteristiky každé proměnné budou odpovídat empirickým datům.

Není mi úplně jasné, jak by měla taková simulace vypadat. Můžete konkretizovat? Ideálně i s obrázky, Tomáš (talk) 20:30, 7 May 2024 (CET)
1. Vizuální Představení: V NetLogo bude scéna připomínat třídu s 30 studenty (agenti), kde každý student bude reprezentován jako agent s unikátním ID.
2. Nastavení Atributů: V levém panelu bude možné pomocí sliderů a vstupních polí měnit atributy každého studenta.
3. Interaktivní Úpravy: Uživatelé budou moci dynamicky upravovat tyto atributy a okamžitě vidět, jak se změny promítnou do inicializace agentů v modelu.
4. Modelování Úspěšnosti: Po nastavení atributů a spuštění modelu se pro každého studenta vypočítá hodnota úspěšnosti. Tento výpočet bude založen na předem definovaném modelu, který zahrne : kombinaci významných atributů a jejich vliv na akademický výkon
5. Bez Dynamických Interakcí: Vzhledem k absenci časových a interakčních dat bude simulace provádět jednorázový výpočet úspěšnosti bez sledování dynamických změn v čase.
6. Zobrazení Úspěšnosti: Po dokončení modelování bude každý student v třídě (scéně) mít přiřazenou hodnotu úspěšnosti, která bude zobrazena vedle jeho ikony nebo v datové tabulce pod : : scénou.
7. Statistické Grafy: Pod vizualizací třídy budou prezentovány různé statistické grafy, včetně:
   : * Distribuce Úspěšnosti: Histogram nebo boxplot ukazující rozložení úspěšnosti mezi studenty.
   : * Distribuce Motivace: Podobné grafy pro motivaci a další číselné atributy.
   : * Korelační Grafy: Scatter ploty nebo jiné grafy zobrazující korelace mezi úspěšností a jednotlivými atributy, aby bylo možné identifikovat faktory s největším vlivem.
8. Plánované Rozšíření Modelu: Po prvotní analýze a identifikaci významných korelací plánuju rozšířit model o další zajímavé atributy, které mohou mít vliv na úspěšnost studentů: Počet : hodin strávených studiem, Počet absencí, Konzumace alkoholu,a další relevantní faktory zahrnuté v datasetu


Vplyv odlesňovania v Amazónií na globálne otepľovanie

Popis

Táto simulácia sa zameriava na analýzu odlesňovania v Amazónií a jeho vplyv na globálne otepľovanie. Hlavným cieľom je študovať, ako zmeny v rozlohe lesných porastov ovplyvňujú teplotu, vlhkosť a iné environmentálne faktory.

Agenti

1. Lesníci: Agenti zodpovední za rozhodovanie o odlesňovaní.

2. Stromy: Agenti reprezentujúci lesný porast v oblasti simulácie.

3. Senzor: Agenti sledujúci teplotu, vlhkosť a iné v rôznych častiach oblasti.

Cíl

Cieľom simulácie je analyzovať, ako rôzne úrovne odlesňovania ovplyvňujú teplotu a ďalšie environmentálne faktory v danej oblasti.

Užitečnost

Simulácia poskytuje užitočný nástroj na preskúmanie dopadov odlesňovania na miestne klimatické podmienky a globálne otepľovanie. Vďaka vizualizácie sa vytvára priestor pre lepšie pochopenie procesov, ktoré sa dejú v dôsledku odlesňovania Amazónie. Na základe simulácie je viditeľné aký vplyv má odlesňovanie na teplotu a vlhkosť v oblasti a na celosvetové klimatické zmeny a pomáha tak identifikovať optimálne stratégie riadenia lesníctva z hľadiska ochrany klímy.

Metoda a způsob simulace

Simulácia bude používať agent-based modelovanie NetLogo, kde jednotlivé entity (agenti) budú reagovať na zmeny vo svojom prostredí a vykonávať určité akcie na základe stanovených pravidiel.

1. Inicializácia: Na začiatku simulácie sa definuje topografia, rozmiestnenie stromov a miesto lesníkov.

2. Krok simulácie: V každom kroku lesníci rozhodujú o tom, koľko stromov odstránia a kde. Potom sa aktualizuje stav stromov a environmentálne faktory.

3. Vyhodnotenie: Po určenom počte krokov sa vyhodnotia zmeny v teplote, vlhkosti a iných faktoroch.

Proměnné

• Počet senzorov = 5

• Lesná plocha: Miera lesného porastu v oblasti simulácie, môže byť vyjadrená ako počet stromov alebo pomer lesného pokrytia vzhľadom na celkovú plochu.

• Teplota

• Vlhkosť

Náhodné proměnné

• Úroveň odlesňovania: Percento stromov odstránených lesníkmi, čo ovplyvňuje veľkosť a rozlohu lesného pokrytia.

• Počet lesníkov

Dáta

• Global Forest Watch (https://www.globalforestwatch.org/): Poskytuje dáta o odlesňovaní a lesných pokryvkách z celého sveta, vrátane histórie odlesňovania a zmeny lesných ploch.

• NASA Earth Observing System Data and Information System (EOSDIS) (https://earthdata.nasa.gov/): NASA ponúka širokú škálu dát o poveternostných podmienkach, teplotách, vlhkosti a ďalších environmentálnych faktoroch pomocou svojich satelitných misií.

• WorldClim (https://www.worldclim.org/): Poskytuje voľne dostupné globálne klimatické dáta, vrátane teploty, zrážok a iných klimatických premenných, ktoré môžu byť použité na simuláciu klimatických podmienok v rôznych oblastiach.

• Food and Agriculture Organization of the United Nations (FAO) (http://www.fao.org/faostat/en/#data): FAO poskytuje štatistické dáta o lesníctve a odlesňovaní, vrátane údajov o množstve odlesnených ploch v rôznych krajinách a regiónoch.

Drgv00 (talk) 15:44, 7 May 2024 (CET)


Simulace plastového znečištění oceánů

Popis

Simulace se zaměřuje na aktuální problém znečištění oceánů plastem. Oceány se neustále znečišťují, ale je i vynaložené úsilí toto znečištění mitigovat. Tato simulace reflektuje oba aspekty problematiky. Simulace ukáže interakci úklidových lodí a hromadícího se plastu v oblasti Great Pacific Garbage Patch.

Cíl

Cílem simulace je zkoumat mitigační schopnosti úklidových lodí v oblasti Great Pacific Garbage Patch a navrhnout hrubý plán projektu, který by symbolizoval optimální počet nasazených úklidových lodí pro efektivní odbyt plastu a hlavní faktory příspívající do navyšujícího se znečištění.

Užitečnost

Výsledky této simulace mohou bý užitečné jak pro laiky, kterým přehledně vizualizuje akutní problematiku z hlediska znečištění oceánů, tak pro experty, kteří na základě výsledků mohou sledovat trendy znečištění na základě zkoumaných faktorů - zda je možné nalézt řešení, které vyústí v rychlejší odbyt plastu v oceánech, než jeho přísun. Též je vhodné identifikovat faktory, které nejvíce přispívají znečištění.

Metoda a způsob simulace

Nejsem si jistý, zda vytvářím moc komplikovaný návrh, tak rozděluji agenty na kategorie co si myslím, že by bylo zásadní, a co naopak dodatečné.

Základ:

Simulace bude modelována jakožto agentní simulace pomocí nástroje NetLogo. Mezi agenty lze řadit úklidové lodě a samotné plastové částice.


Rozšíření:

Autora napadlo přidat i lodě, které naopak znečištění způsobují (cca 70% odpadu v mořích způsobují právě lodě). Též je jedním z nápadů přidat jako agenta mořského živočicha, který by přílišnou vysokou koncentrací znečištění "trpěl", a dostatečnou mitigací znečištění naopak mohl existovat relativně bez problému.

Proměnné

Nejsem si jistý, zda vytvářím moc komplikovaný návrh, tak rozděluji proměnné na kategorie co si myslím, že by bylo zásadní, a co naopak dodatečné.


Základ:

• Množství vypouštěného plastu

• Koncentrace plastu na km^2

• Kapacita úklidové lodě

• Rychlost úklidové lodě

• Rychlost oceánských proudů (přísun plastu)


Rozšíření:

• Velikost plastu (mikroplast, mesoplast, makroplast, megaplast)

• Kategorie plastu (Typ H, N, P, F)

• Persistence plastu (schopnost přetrvávat na jednom místě)

• Geografická lokalizace vypouštění plastu

• Vertikální pozice plastu (pokud se plast objeví, jestli je moc hluboko na zachycení lodí)

Náhodné proměnné

• Události (katastrofy, dobrovolnické akce pro sběr plastu)

• Počasí (povětrnostní podmínky)

• Lidská činnost (změna legislativy, spotřeba plastových výrobků)

Použitá data pro nastavení simulace

• Především: https://theoceancleanup.com/great-pacific-garbage-patch/

https://powerknot.com/2023/02/20/how-ships-are-fueling-the-global-plastic-pollution-crisis/

https://www.earthdata.nasa.gov/learn/articles/ocean-plastic

https://marine.copernicus.eu/explainers/phenomena-threats/plastic-pollution/from-plastic-marine-pollution

https://www.geographyrealm.com/how-ocean-currents-move-pollution-around-the-world/

https://theoceancleanup.com/ocean-plastic/

Kovs04 (talk) 21:52, 7 May 2024 (CET)


Simulácia: predikcia počtu obyvateľov Slovenskej republiky

Popis

Práca bude simulovať vývoj počtu obyvateľov Slovenska do budúcna. Do úvahy sa bude brať viacero faktorov, ktoré můžu ovplyvňovať vývoj počtu obyvateľov, preto sa budem snažiť o čo najprenejšie výsledky a aby simulácia zohľadňovala dostatočné mnžostvo faktorov a bola komplexná. Simulácia bude založená iba na reálnych dostupných štatistických dátach a nebude obsahovať žiadne náhodné premenné.

Prostredie

Simulácia bude prebiehať v prostredí Vensim.

Cieľ

Predpovedať a graficky znázorniť dlhodobý vývoj počtu obyvateľov SR (napríklad 150 rokov dopredu). Popísať trend rastu/poklesu obyvateľov. Projekcia pôrodnosti, úmrtnosti. Aký faktor ovplyňuje vývoj populácie najviac? Akú rolu v tomto hrajú ostatné faktory?

Premenné

• počet obyvateľov

• prírastok

• úbytok

• imigrácia

• emigrácia

• úmrtnost

• porodnosť

• a ďalšie podľa potreby

Dáta

Vstupné dáta budú podľa najlepšieho formátu vybrané z:

https://www.statista.com/statistics/1009083/total-population-slovakia-1950-2020/.

https://www.worldometers.info/world-population/slovakia-population/.

https://worldpopulationreview.com/countries/slovakia-population

Simon (talk) 11:06, 8 May 2024 (CET)

Schváleno. Pozor na to, že při hodnocení bude kladen velký důraz, mimo jiné, i na komplexnost analýzy a jak byly proměnné simulace a jejich vztahy odvozeny (je třeba, aby to bylo součástí zprávy k simulaci).Oleg.Svatos (talk) 13:47, 9 May 2024 (CET)


Simulace profitability nových finančních produktů při zohlednění rizika nedobytnosti pohledávek a ceny zdrojů

Cíl

Cílem je vytvořit nástroj pro podporu prvnotního nastavení RPSN (poplatku a/nebo sazby) nově nabízeného finančního produktu podle míry rizika nedobytnosti pohledávek a ceny zdrojů za účelem zajištění profitability. Nástroj by měl být parametrizovatelný na základě potřeb finanční organizace, včetně možnosti upravit simulaci podle analýzy vlastních historických dat z již nabízených produktů – viz část o datech níže.

Využití

Uživateli by měli být pracovníci z oddělení finančních institucí zodpovění za pricing produktů a služeb. Protože se jedná o netechnické uživatele s vysokou úrovní kvalifikace v jiném oboru, měla by být simulace spustitelná z "frontendu" – úvodní obrazovky, která umožňuje zadat finanční nebo statistické vstupy popisující historická data a cenu zdrojů. V případě nezadání některé z hodnot se použijí rozumné předdefinovnaé hodnoty.

Metoda a prostředí simulace

Monte Carlo, Excel. Záměrem je vytvoření rozsáhlejší a vícekrát iterované simulace pro zajištění kvalitního výsledku na základě statistických informací o historických datech na již spuštěných, podobných typech produktů.

Proměnné

Vzhledem ke zvolené metodě budou generovány řádově stovky záznamů o fiktivních úvěrech, jejichž parametry budou odpovídat statisticky určeným rozdělením na základě vstupního datasetu popsaného níže. Zásadní je přitom informace, zda úvěrový produkt "defaultoval" – zda byl nebo nebyl splacen ze strany klienta. Jedná se o binární závislou proměnnou, určenou na základě výše úvěru, příjmu klienta a případně dalších vybraných veličin dostupných v datech, jejichž hodnota bude určována na základě zjištěného rozdělení pravděpodobnosti. Sledovaná závislá proměnná bude určena na základě překročení prahové hodnoty váženým součtem ostatních veličin, přičemž správnost stanovení prahové hodnoty a vah bude ověřena vůči vstupnímu datasetu. Na vstupu se bude očekávat parametr ceny zdrojů a případně statistické informace. Výstupním parametrem bude "break-even" RPSN, nad kterou by již měl být produkt profitabilní. U skutečných produktů by bylo nutné určit sazbu, poplatek nebo jejich kombinaci; jedná se nicméně o ryze obchodní rozhodnutí, protože sazby a poplatky jsou typicky technicky převeditelné.

Data využitá pro přípravu simulace

Využití skutečných dat je problematické z hlediska regulací, kterým bankovní instituce podléhají. Bude proto statisticky zpracován vstupní dataset [4] z výukové aplikace, ale uživatel bude mít také možnost zadat jiné statistické informace na základě vlastní analýzy (nebo informací od příslušného oddělení).

Budj07 (talk) 20:17, 9 May 2024 (CET)

Schváleno.Oleg.Svatos (talk) 10:37, 10 May 2024 (CET)

Simulace implementace SW projektu pro potřeby projektového řízení

Cíl

Cílem této simulace je vytvořit model systémové dynamiky softwarového projektu, který zohlední známé proměnné i prvek náhody a pomůže zkoumat vliv jednotlivých faktorů a vzájemné ovlivňování v důležitých parametrech projektu

Využití

Model by mohl být použit při naceňování, stanovení termínu dodání, nebo odhadu míry rizika. Mohl by být použit i na modelování důsledků změn v projektu.

Metoda a prostředí simulace

Simulace bude realizována prostřednictvím nástroje Vensim.

Proměnné

. Scope . Costs . Time . Resources . Quality . Risk

Náhodné proměnné

nemoc výpověď dovolená chyba v analýze

Zdroje

LI, Suinan. A generic model of project management with Vensim. 2008. Master's Thesis. Universiteteti Agder/Agder University. https://uia.brage.unit.no/uia-xmlui/bitstream/handle/11250/137043/Suinan_Li.pdf?sequence=1

BESTEIRO, Élen Nara Carpim; DE SOUZA PINTO, Jefferson; NOVASKI, Olívio. Success factors in project management. Business management dynamics, 2015, 4.9. https://web.archive.org/web/20180420205905id_/http://bmdynamics.com/issue_pdf/bmd110530a-%2019-34.pdf

Pavl11 (talk) 20:30, 9 May 2024 (CET)

Schváleno. Pozor na to, že při hodnocení bude kladen velký důraz, mimo jiné, i na komplexnost analýzy a jak byly proměnné simulace a jejich vztahy odvozeny (je třeba, aby to bylo součástí zprávy k simulaci).Oleg.Svatos (talk) 10:38, 10 May 2024 (CET)