Difference between revisions of "Schooling of the fish"
(→Problem definition) |
(→Method) |
||
Line 3: | Line 3: | ||
=Method= | =Method= | ||
− | The simulated school is an elaboration of | + | The simulated school is an elaboration of an agent based system, with the simulated fish being the agents. The aggregate motion of the simulated school is created by a distributed behavioral model much like that at work in a natural school; the fish choose their own course. Each simulated fish is implemented as an independent agent that navigates according to its local perception of the dynamic environment. The aggregate motion of the simulated school is the result of the dense interaction of the relatively simple behaviors of the individual simulated fish. Fish are bound by certain set of rules explained in later chapters. This simulation is implemented in NetLogo since it provides the best capabilities from available tools. There is a wide range of monitoring tools and visualization approaches in NetLogo which will be used as a part of the simulation. |
− | |||
− | |||
=Model= | =Model= |
Revision as of 17:17, 12 January 2013
Contents
Problem definition
The aggregate motion of a flock of birds, a herd of land animals, or a school of fish is a beautiful and familiar part of the natural world. A school exhibits many contrasts. It is made up of discrete fish yet overall motion seems fluid. It is simple in concept yet is so visually complex. This simulation proposes that the leaders can emerge as a consequence of a self-organized process based on local rules of dynamic interactions among individuals. Schools are an example of self-organized behaviour in a group where one can study the leadership properties of the individuals. Simulation proposed to monitor and analyze the leadership properties of the school and given individuals. Based on this analysis I tried to identify key factors that influence emergence of the leaders.
Method
The simulated school is an elaboration of an agent based system, with the simulated fish being the agents. The aggregate motion of the simulated school is created by a distributed behavioral model much like that at work in a natural school; the fish choose their own course. Each simulated fish is implemented as an independent agent that navigates according to its local perception of the dynamic environment. The aggregate motion of the simulated school is the result of the dense interaction of the relatively simple behaviors of the individual simulated fish. Fish are bound by certain set of rules explained in later chapters. This simulation is implemented in NetLogo since it provides the best capabilities from available tools. There is a wide range of monitoring tools and visualization approaches in NetLogo which will be used as a part of the simulation.
Model
Quick Start
<TODO>
Entities...
Controls
<TODO>
Buttons
<TODO>
Plots
<TODO>
Monitors
<TODO>
Model limitations
<TODO>
Results
<TODO>
Legend
<TODO>
Conclusion
<TODO>