Difference between revisions of "Nash equilibrium/cs"
(→Vlastnosti Nashovy rovnováhy) |
(→Vlastnosti Nashovy rovnováhy) |
||
Line 10: | Line 10: | ||
* Nashova rovnováha není (automaticky) [[Parreto efficiency/cs|Pareto-efektivní]]. Klasickým případem je [[Prisoner's dilemma/cs|hra vězňovo dilema]], ve které se hráči bez možnosti kooperace racionálně rozhodnou pro řešení, které je pro oba z hráčů horší, než jiný možný výsledek hry. | * Nashova rovnováha není (automaticky) [[Parreto efficiency/cs|Pareto-efektivní]]. Klasickým případem je [[Prisoner's dilemma/cs|hra vězňovo dilema]], ve které se hráči bez možnosti kooperace racionálně rozhodnou pro řešení, které je pro oba z hráčů horší, než jiný možný výsledek hry. | ||
* Každá hra '''s konstantním součtem''' má rovnovážné řešení ve smíšených strategiích. (Ryzí strategie jsou podmnožinou smíšených strategií).<ref name=dlouhy/> | * Každá hra '''s konstantním součtem''' má rovnovážné řešení ve smíšených strategiích. (Ryzí strategie jsou podmnožinou smíšených strategií).<ref name=dlouhy/> | ||
− | * Každá hra dvou hráčů má alespoň jedno rovnovážné řešení <ref name=nash>NASH, John F. ''Equilibrium Points in n-Person Games.'' In: ''Proceedings of the National Academy of Sciences of the United States of America'', Vol.36, No. 1. Jan 15, 1950. Dostupné z: http://courses.engr.illinois.edu/ece586/TB/Nash-NAS-1950.pdf</ref> | + | * Každá hra dvou hráčů má alespoň jedno rovnovážné řešení <ref name=dlouhy/><ref name=nash>NASH, John F. ''Equilibrium Points in n-Person Games.'' In: ''Proceedings of the National Academy of Sciences of the United States of America'', Vol.36, No. 1. Jan 15, 1950. Dostupné z: http://courses.engr.illinois.edu/ece586/TB/Nash-NAS-1950.pdf</ref> |
=Řešené příklady= | =Řešené příklady= |
Revision as of 22:26, 17 June 2012
Jedním ze základních úkolů teorie her je popsání optimálních strategií jednotlivých hráčů, respektive výsledku hry (za předpokladu racionálního chování hráčů). Vhodným nástrojem je nalezení Nashovy rovnováhy.
Contents
Definice
Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.[1]
Vlastnosti Nashovy rovnováhy
Z definice vyplývají následující vlastnosti Nashovy rovnováhy, které jsou užitečné pro její nalezení a interpretaci:
- Nashova rovnováha nikdy neleží v silně dominovaném sloupci.
- Nashova rovnováha není (automaticky) Pareto-efektivní. Klasickým případem je hra vězňovo dilema, ve které se hráči bez možnosti kooperace racionálně rozhodnou pro řešení, které je pro oba z hráčů horší, než jiný možný výsledek hry.
- Každá hra s konstantním součtem má rovnovážné řešení ve smíšených strategiích. (Ryzí strategie jsou podmnožinou smíšených strategií).[1]
- Každá hra dvou hráčů má alespoň jedno rovnovážné řešení [1][2]
Řešené příklady
V následujících kapitolách budou naznačeny metody hledání Nashovy rovnováhy, počínaje nejjednoduššími, použitelnými jen ve specifických případech, po lehce složitější univerzální metody.
Nashova rovnováha v ryzích strategiích
Příklad 1: Vězňovo dilema
Přiznat | Nepřiznat | |
---|---|---|
Přiznat | -5, -5 | -1, -10 |
Nepřiznat | -10, -1 | -2, -2 |
Nashova rovnováha ve smíšených strategiích
Další příklady
Reference
- ↑ 1.0 1.1 1.2 DLOUHÝ, Martin. Úvod do teorie her. 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.
- ↑ NASH, John F. Equilibrium Points in n-Person Games. In: Proceedings of the National Academy of Sciences of the United States of America, Vol.36, No. 1. Jan 15, 1950. Dostupné z: http://courses.engr.illinois.edu/ece586/TB/Nash-NAS-1950.pdf
Doplňující literatura
- Ben Polak, Game Theory (Yale University: Open Yale Courses), http://oyc.yale.edu/ (Accessed June 17, 2012). License: Creative Commons BY-NC-SA, lectures 4-8