Difference between revisions of "Multistage Games/cs"

From Simulace.info
Jump to: navigation, search
Line 39: Line 39:
 
   Pokud se ve hře ''1,2, ..., t−1'' stane to a to, pak ve hře ''t'' zvolím akci ''a''.
 
   Pokud se ve hře ''1,2, ..., t−1'' stane to a to, pak ve hře ''t'' zvolím akci ''a''.
  
Pokud se podíváme znovu na první hru, tak tato hra má čtyři možné výsledky. Každý hráč by měl mít naplánovanou strategii pro další hru pro každý z těchto výsledků. Lze znázornit např. pomocí stromového grafu.  
+
[[File:Two-stage-game.png|150px|thumb|right]]
 +
 
 +
 
 +
 
 +
 
 +
Pokud se podíváme znovu na první hru, tak tato hra má čtyři možné výsledky. Každý hráč by měl mít naplánovanou strategii pro další hru pro každý z těchto výsledků, protože nikdy neví, jak bude hrát protihráč. Všechny možné situace je dobré znázornit např. pomocí stromového grafu.  
 +
 
 +
 
 +
 
  
 
== Zdroje ==
 
== Zdroje ==
 
<references/>
 
<references/>

Revision as of 22:14, 17 June 2014

Úvod

Pojmem vícekolové hry rozumíme situaci, kdy stejní hráči hrají postupně Jednorázové hry, kde reagují na výsledek hry předchozí. Hráči dle výsledku předchozích her rozhodují o svých následujících tazích.

Vícekolové hry patří mezi hry v rozšířené formě, kdy hráči rozhodují konfliktní situaci po tazích. Rozhodnutí jednoho hráče o volbě jeho strategie ovlivňují předchozí tahy ostatních hráčů. Celá hra je procesem sekvence rozhodnutí jednotlivých hráčů.[1]


Definice

(1) V každém kole Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k} znají všichni hráči všechny tahy, provedené v předchozích kolech, (2) každý hráč má v každém z kol nanejvýš jeden tah a (3) žádná z informačních sad pro právě hrané kolo nepopisuje plánované tahy jednotlivých hráčů.

Vícekolová hra je konečná posloupnost jednorázových her, kde každá z nich je hra s úplnou ale nedokonalou informací. Tyto hry jsou hrány postupně stejnými hráči a celkový zisk je určen dle výsledků jednotlivých her. Je zde předpoklad, že každá hra je hrána v odlišnou dobu, tedy že hra č.1 je hrána v době č.1, hra č.2 v době č.2, atd. Předpokladem také je, že výsledek každé hry je znám všem hráčům.[2]

Je důležité si uvědomit, že hráči, když vědí, že bude následovat další hra, mohou plánovat a podmínit si své tahy v budoucích hrát na základě výsledků aktuální hry či na základě výsledků již proběhlých her.


Ukázka hry

Mějme dva hráče, kteří hrají hru typu vězňovo dilema. Každý z hráčů tedy může buď mluvit a přiznat se (B,D), nebo zapírat a spoléhat na to, že druhý hráč udělá to samé (A,C).

Game 1.png

Po dohrání této hry (a odpykání si patřičných let) se oba hráči dostávají do možnosti odplaty a ocitnout v situaci, kdy každý z nich se může přidat do gangu (G) nebo zůstat sám (S). Situace je znázorněna v následující matici.

Game 2.png

Pokud oba hráči zvolí S, tak bez ohledu na výsledek předešlé hry si každý půjde svou cestou, a zisk obou je 0. Pokud oba vstoupí do gangu (G), budou spolu bojovat, utrží ztrátu a jejich výsledný zisk bude -3. Třetí situace je, když jeden z hráčů zvolí vstup do gangu (G) a druhý zůstane sám (S). Ten co bude sám se neubrání a utrpí velkou ztrátu -4. Druhý hráč, který se stal součástí gangu, je pouze mírně zraněn, a jeho zisk z této hry je -1.

Pokud budeme každou z výše uvedených her hrát samostatně, hráči nebudou hry brát v souvislostech a budou se snažit v každé dosáhnout nejlepšího výsledku. Pokud ale hráč ví, že hry budou na sebe navazovat, má možnost vytvořit si strategii a chovat se podle toho.

Vezměme si hráče 1. Hráč 1 se rozhodne, že v 1. hře bude hrát B (mluvit) a ve 2. hře bude hrát S (sám) pouze v tom případě, pokud hráč 2 bude v první hře hrát C (zapírat). V tomto případě by hráč 1 měl z první hry zisk 6 a z druhé hry 0.

Pokud ale hráč 2 v první hře bude mluvit (D), hráč 1 má naplánováno, že v druhé hře bude hrát G (gang).

Tuto strategii lze obecně zapsat takto:

 Pokud se ve hře 1,2, ..., t−1 stane to a to, pak ve hře t zvolím akci a.
Two-stage-game.png



Pokud se podíváme znovu na první hru, tak tato hra má čtyři možné výsledky. Každý hráč by měl mít naplánovanou strategii pro další hru pro každý z těchto výsledků, protože nikdy neví, jak bude hrát protihráč. Všechny možné situace je dobré znázornit např. pomocí stromového grafu.



Zdroje

  1. DLOUHÝ, Martin; FIALA, Petr. Úvod do teorie her. 2.přepracované vydání. Vysoká škola ekonomická v Praze : Nakladatelství Oeconomica, 2009. 120 s. ISBN 978-80-245-1609-7.
  2. Tadelis, Steve. Game Theory: An Introduction. Princeton: Princeton UP, 2013. Print. http://faculty.haas.berkeley.edu/stadelis/Game%20Theory/econ160_week5.pdf