Difference between revisions of "Nash equilibrium/cs"
(→Nashova rovnováha v ryzích strategiích) |
(→Příklad 1: Vězňovo dilema) |
||
Line 18: | Line 18: | ||
=== Příklad 1: Vězňovo dilema === | === Příklad 1: Vězňovo dilema === | ||
Najděte Nashovu rovnováhu ve hře [[Prisoner's dilemma/cs|vězňovo dilema]], jejíž výplatní matice je dána takto: Pokud se ani jeden z vězňů nepřizná, dostane každý trest 2 roky. Pokud se přizná jeden z vězňů, stráví ve vězení jen jeden rok, ale jeho spolupachatel 10. Pokud se přiznají oba hráči, stráví každý ve vězení 10 let. | Najděte Nashovu rovnováhu ve hře [[Prisoner's dilemma/cs|vězňovo dilema]], jejíž výplatní matice je dána takto: Pokud se ani jeden z vězňů nepřizná, dostane každý trest 2 roky. Pokud se přizná jeden z vězňů, stráví ve vězení jen jeden rok, ale jeho spolupachatel 10. Pokud se přiznají oba hráči, stráví každý ve vězení 10 let. | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | ! scope="col" | | ||
+ | ! scope="col" | Přiznat | ||
+ | ! scope="col" | Nepřiznat | ||
+ | |- | ||
+ | ! scope="row" | Přiznat | ||
+ | | -5, -5 | ||
+ | | -1, -10 | ||
+ | |- | ||
+ | ! scope="row" | Nepřiznat | ||
+ | | -10, -1 | ||
+ | | -2, -2 | ||
+ | |} | ||
+ | ====Řešení==== | ||
+ | Využijeme znalosti, že rovnovážné řešení nikdy neleží v silně (ostře) dominovaném řádku či sloupci. Pro prvního hráče první řádek (přiznat) silně dominuje druhý řádek (nepřiznat). Tento řádek tedy můžeme vyškrtnout. Obdobně pro druhého hráče je první sloupec dominován prvním. | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- |
Revision as of 23:34, 17 June 2012
Jedním ze základních úkolů teorie her je popsání optimálních strategií jednotlivých hráčů, respektive výsledku hry (za předpokladu racionálního chování hráčů). Vhodným nástrojem je nalezení Nashovy rovnováhy.
Contents
Definice
Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.[1]
Vlastnosti Nashovy rovnováhy
Z definice vyplývají následující vlastnosti Nashovy rovnováhy, které jsou užitečné pro její nalezení a interpretaci:
- Nashova rovnováha nikdy neleží v silně dominovaném sloupci.
- Nashova rovnováha není (automaticky) Pareto-efektivní. Klasickým případem je hra vězňovo dilema, ve které se hráči bez možnosti kooperace racionálně rozhodnou pro řešení, které je pro oba z hráčů horší, než jiný možný výsledek hry.
- Každá hra s konstantním součtem má rovnovážné řešení ve smíšených strategiích. (Ryzí strategie jsou podmnožinou smíšených strategií).[1]
- Každá hra dvou hráčů má alespoň jedno rovnovážné řešení [1][2]
Řešené příklady
V následujících kapitolách budou naznačeny metody hledání Nashovy rovnováhy, počínaje nejjednoduššími, použitelnými jen ve specifických případech, po lehce složitější univerzální metody.
Nashova rovnováha v ryzích strategiích
Příklad 1: Vězňovo dilema
Najděte Nashovu rovnováhu ve hře vězňovo dilema, jejíž výplatní matice je dána takto: Pokud se ani jeden z vězňů nepřizná, dostane každý trest 2 roky. Pokud se přizná jeden z vězňů, stráví ve vězení jen jeden rok, ale jeho spolupachatel 10. Pokud se přiznají oba hráči, stráví každý ve vězení 10 let.
Přiznat | Nepřiznat | |
---|---|---|
Přiznat | -5, -5 | -1, -10 |
Nepřiznat | -10, -1 | -2, -2 |
Řešení
Využijeme znalosti, že rovnovážné řešení nikdy neleží v silně (ostře) dominovaném řádku či sloupci. Pro prvního hráče první řádek (přiznat) silně dominuje druhý řádek (nepřiznat). Tento řádek tedy můžeme vyškrtnout. Obdobně pro druhého hráče je první sloupec dominován prvním.
Přiznat | Nepřiznat | |
---|---|---|
Přiznat | -5, -5 | -1, -10 |
Nepřiznat | -10, -1 | -2, -2 |
Nashova rovnováha ve smíšených strategiích
Další příklady
Reference
- ↑ 1.0 1.1 1.2 DLOUHÝ, Martin. Úvod do teorie her. 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.
- ↑ NASH, John F. Equilibrium Points in n-Person Games. In: Proceedings of the National Academy of Sciences of the United States of America, Vol.36, No. 1. Jan 15, 1950. Dostupné z: http://courses.engr.illinois.edu/ece586/TB/Nash-NAS-1950.pdf
Doplňující literatura
- Ben Polak, Game Theory (Yale University: Open Yale Courses), http://oyc.yale.edu/ (Accessed June 17, 2012). License: Creative Commons BY-NC-SA, lectures 4-8