Difference between revisions of "Nash equilibrium/cs"
(→Další literatura) |
(→Definice) |
||
Line 3: | Line 3: | ||
=Definice= | =Definice= | ||
− | <ref name=dlouhy>DLOUHÝ, Martin. ''Úvod do teorie her.'' 2., | + | ''Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.''<ref name=dlouhy>DLOUHÝ, Martin. ''Úvod do teorie her.'' 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.</ref> |
=Nashova rovnováha v ryzích strategiích= | =Nashova rovnováha v ryzích strategiích= |
Revision as of 19:44, 17 June 2012
Jedním ze základních úkolů teorie her je popsání optimálních strategií jednotlivých hráčů, respektive výsledku hry (za předpokladu racionálního chování hráčů). Vhodným nástrojem je nalezení Nashovy rovnováhy.
Contents
[hide]Definice
Nashova rovnováha je takové řešení, ve kterém platí, že pokud se jeden z hráčů nebude držet své optimální strategie, zatímco jeho soupeř (soupeři) ano, jeho výhra se sníží, nebo zůstane stejná.[1]
Nashova rovnováha v ryzích strategiích
Nashova rovnováha ve smíšených strategiích
Delší příklady
Reference
- Jump up ↑ DLOUHÝ, Martin. Úvod do teorie her. 2., přepracované vydání Praha: Oeconomica, 2009, 119 s. ISBN 978-80-245-1609-7.
Další literatura
- Ben Polak, Game Theory (Yale University: Open Yale Courses), http://oyc.yale.edu/ (Accessed June 17, 2012). License: Creative Commons BY-NC-SA, lectures 5-8